Perception

Maneesh Agrawala

CS 448B: Visualization
Fall 2018

Lasł Time: Exploratory Data Analysis

Will Burtin, 1951

Bacteria	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
Aerobacter aerogenes	870	1	1.6	-
Brucella abortus	1	2	0.02	-
Bacillus anthracis	0.001	0.01	0.007	+
Diplococcus pneumoniae	0.005	11	10	+
Escherichia coli	100	0.4	0.1	-
Klebsiella pneumoniae	850	1.2	1	-
Mycobacterium tuberculosis	800	5	2	-
Proteus vulgaris	3	0.1	0.1	-
Pseudomonas aeruginosa	850	2	0.4	-
Salmonella (Eberthella) typhosa	1	0.4	0.008	-
Salmonella schottmuelleri	10	0.8	0.09	-
Staphylococcus albus	0.007	0.1	0.001	+
Staphylococcus aureus	0.03	0.03	0.001	+
Streptococcus fecalis	1	1	0.1	+
Streptococcus hemolyticus	0.001	14	10	+
Streptococcus viridans	0.005	10	40	+

How do the drugs compare?

Lessons

Explorafory Process

1 Construct graphics to address questions
2 Inspect "answer" and assess new questions
3 Repeat!
Transform the data appropriately (e.g॰, invert, log)
"Show data variation, noł design variation"
-Tufte

Formulating a Hypothesis

Null Hypothesis $\left(\mathrm{H}_{0}\right): \quad \quad \mu_{\mathrm{m}}=\mu_{\mathrm{f}}$ (population)
Alternate Hypothesis $\left(\mathbf{H}_{\mathrm{a}}\right): \quad \mu_{\mathrm{m}} \neq \mu_{\mathrm{f}}$ (population)
A statistical hypothesis test assesses the likelihood of the null hypothesis.

What is the probability of sampling the observed data assuming population means are equal?
This is called the p value

Choropleth maps of cancer deaths in Texas.
One plot shows a real data sets. The others are simulated under the null hypothesis of spatial independence.

Can you spot the real data? If so, you have some evidence of spatial dependence in the data.

Tableau

Polaris/Tableau Approach

Insight: simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa
Use smart defaults for visual encodings

Recently: aułomate visualization design (ShowMe - Like APT)

Specifying Table Configurations

Operands are names of database fields Each operand interpreted as a set \{...\} Dała is either Ordinal or Quantitative

Three operators:

```
concatenation (+)
cross product (x)
nest (/)
```


Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns
Quarter $=\left\{(\text { Qtr } 1)_{r}(\text { Qłr2 })_{r}(\text { Qtr3 })_{r}(\right.$ Qtr 4$\left.)\right\} \rightarrow$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

Quantitative fields: treat domain as single element set and encode spatially as axes
Profit $=\{($ Profit[-4 10,650] $)\} \rightarrow$

Concatenation (+) Operator

Ordered union of set interpretations
Quarter + Product Type
$=\{($ Qtr 1$),($ Qtr2 $),($ Qtr3 $),($ Qtr 4$)\}+\{(C o f f e e), ~(E s p r e s s o)\} ~$
= \{(Qtr 1),(Qtr2),(Qtr3),(Qtr4),(Coffee),(Espresso)\}

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

Profit + Sales $=\{(\operatorname{Profit}[-310,620]),($ Sales[0, 1000] $)\}$

Cross (x) Operator

Cross-product of set interpretations
Quarter x Product Type
= \{(Qtr1,Coffee), (Qtr 1, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea) \}

Qtr 1		Qtr2		Qtr3		Qtr 4	
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso
131	19	160	20	178	12	134	33

Product Type x Profit =

Coffee					Espresso				
	© -			-	-	-			
0	100	200	300	400	0	100	200	300	400
Profit					Profit				

Nest (/) Operator

Cross-product filtered by existing records
Quarter x Month
creates twelve entries for each quarter. i.e., (Ctr 1, December)

Quarter / Month creates three entries per quarter based on tuples in database (not semantics)

Polaris/Tableau Table Algebra

The operators (+ , $\mathbf{x}, /$) and operands (\mathbf{O}, \mathbf{Q}) provide an algebra for tabular visualization.

Algebraic statements are then mapped to:
Queries - selection, projection, group-by aggregation
Visualizations - trellis plot partitions, visual encodings
In Tableau, users make statements via drag-and-drop Note that this specifies operands NOT operators! Operators are inferred by data type (\mathbf{O}, \mathbf{Q})

Ordinal - Ordinal

Grate	Coffee	Produ Espresso	ct Type Herbal Tea	Tea
Colorado	-	-	-	-
Connecticut	-	-	-	-
Florida	-	-	-	-
Illinois	-	,	-	-
Iowa	-	-	-	+
Louisiana	-	-	-	
Massachusetts	-	-	-	-
Missouri	-	\bullet	-	\bullet
Nevada	-	-		-
New Hampshire	-	-	-	-
New Mexico	\bullet	\bullet	-	
New York	-	-	-	-
Ohio	-	-	-	-
Oklahoma	-	-	-	
Oregon	-	-	-	-
Texas	-	-	\bullet	
Utah	-	-	-	-
Washington	-	-	-	-
Wisconsin	\bigcirc	-	\bullet	\bullet

Quantitative - Quantitative

Ordinal - Quantitative

Summary

Explorałory analysis may combine graphical methods, and statistics

Use questions to uncover more questions

Formal methods may be used to confirm

Interaction is essential for exploring large multidimensional dafasets

Announcements

A2: Exploratory Data Analysis

Use Tableau to formulate $\&$ answer questions
First steps

- Step 1: Pick a domain
- Step 2: Pose questions
- Step 3: Find data
- Iterate

Create visualizations

- Interact with data
- Question will evolve
- Tableau

Make wiki notebook

- Keep record of all steps you took to answer the questions

Due before class on Oct 15, 2018

Perception

Mackinlay's ranking of encodings

QUANTITATIVE	ORDINAL	NOMINAL
Position	Position	Position
Length	Density (Val)	Color Hue
Angle	Color Sat	Texture
Slope	Color Hue	Connection
Area (Size)	Texture	Containment
Volume	Connection	Density (Val)
Density (Val)	Containment	Color Sat
Color Sat	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area (Size)	Slope
Containment	Volume	Area
Shape	Shape	Volume

Topics

Signal Detection
Magnitude Estimation
Pre-Attentive Visual Processing
Using Multiple Visual Encodings
Gestalt Grouping
Change Blindness

Detection

Detecting brightness

Which is brighter?

Detecting brightness

$(128,128,128)$

(130, 130, 130)

Which is brighter?

Just noticeable difference

JND (Weber's Law)

$$
\Delta S=k \frac{\Delta I}{I}
$$

- Ratios more important than magnitude
- Most continuous variations in stimuli are perceived in discrete steps

Information in color and value

Value is perceived as ordered
\therefore Encode ordinal variables (O)

\therefore Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered
\therefore Encode nominal variables (\mathbf{N}) using color

Steps in font size

Sizes standardized in $16^{\text {th }}$ century

$$
\begin{array}{llllllll}
a & a & a & \propto & a & \propto & \propto & \bullet
\end{array}
$$

\bullet

$$
67
$$

$$
\begin{array}{llllllllllll}
6 & 7 & 8 & 9 & 10 & 11 & 12 & 14 & 16 & 18 & 21 & 24
\end{array}
$$

Estimating Magnitude

Steven's power law

$$
S=I^{p}
$$

$p<1$: underestimate p > 1 : overestimate

[graph from Wilkinson 99, based on Stevens 61]

Exponents of power law

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) -0.6 (Heptane)
Taste	0.6 (Saccharine) -1.3 (Salt)
Temperature	1.0 (Cold) -1.6 (Warm)
Vibration	0.6 (250 Hz) -0.95 (60 Hz)
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

Apparent magnitude scaling

[Carłography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96]

$$
S=0.98 A^{0.87} \text { [from Flannery 71] }
$$

Proportional symbol map

Newspaper Circulation

Graduated sphere map

FIGURE 7.4. An eye-catching map created using three-dimensional geometric symbols. (After Smith, 1928. First published in The Geographical Review, 18(3), plate 4. Reprinted with permission of the American Geographical Society.)

Cleveland and McGill

[Cleveland and McGill 84]

Figure 3. Graphs from position-angle experiment.
[Cleveland and McGill 84]

Relative magnitude estimation

Most accurate	Position (common) scale Position (non-aligned) scale	
	Slongth	
Least accurate	Angle	
		Colume

Mackinlay's ranking of encodings

QUANTITATIVE
Position
Length
Angle
Slope
Area (Size)
Volume
Density (Val)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Val)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Val)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Preattentive vs. Attentive

How many 3's

> 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

How many 3's

$$
\begin{aligned}
& 1281768756138976546984506985604982826762 \\
& 9809858458224509856458945098450980943585 \\
& 9091030209905959595772564675050678904567 \\
& 8845789809821677654876364908560912949686
\end{aligned}
$$

Visual pop-out: Color

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Visual pop-out: Shape

htip://www.csc.ncsu.edu/faculty/healey/PP/index.html

Feałure conjunctions

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Preattentive features

Addition

[Information Visualization. Figure 5. 5 Ware 04]

More preattentive features

Line (blob) orientation	Julesz \& Bergen [1983]; Wolfe et al. [1992]
Length	Triesman \& Gormican [1988]
Width	Julesz [1985]
Size	Triesman \& Gelade [1980]
Curvature	Triesman \& Gormican [1988]
Number	Julesz [1985]; Trick \& Pylyshyn [1994]
Terminators	Julesz \& Bergen [1983]
Intersection	Julesz \& Bergen [1983]
Closure	Enns [1986]; Triesman \& Souther [1985]
Colour (hue)	Nagy \& Sanchez [1990, 1992]; D'Zmura [1991]; Kawai et al. [1995];
	Bauer et al. [1996]
Intensity	Beck et al. [1983];
	Triesman \& Gormican [1988]
Flicker	Julesz [1971]
Direction of motion	Nakayama \& Silverman [1986]; Driver \& McLeod [1992]
Binocular lustre	Wolfe \& Franzel [1988]
Stereoscopic depth	Nakayama \& Silverman [1986]
3-D depth cues	Enns [1990]
Lighting direction	Enns [1990]

Feature-integration theory

Feature maps for orientation \& color [Green]

Treisman's feature integration model [Healey04]

Multiple Attributes

One-dimensional: Lightness

0

\square
\square White

Black
Black

White

One-dimensiond: Shape

\square
\square

Square
Circle
Circle
Square
Circle

Circle
Circle

Square

Circle

Circle

Correlated dims: Shape or lightness

	Circle
	Square
	Square
	Circle
	Square

	Circle
	Square
	Square
	Square
	Circle

Orthogonal dims: Shape \& lightness

-|ण

-	Circle
	Square
	Square
	Circle
	Square

Speeded classification

Redundancy gain
Facilitation in reading one dimension when the other provides redundant information

Filtering interference
Difficulty in ignoring one dimension while attending to the other

Speeded classification

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa
Stroop effect - Color naming influenced by word identity, but word naming not influenced by color

Correlałed dims: Size and value

VALUE IN MILLIONS OF DOLLARS

VALUE IN MILLIONS OF DOLLARS

W. S. Dobson, Visual information processing and cartographic communication: The role of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995)

Othogonal dims: Aspect ratio

FIGURE 3.38. An example of the use of an ellipse as a map symbol in which the horizontal and vertical axes represent different (but presumably related) variables.

Orientation and Size (Single Mark)

FIGURE 3.36. A map of temperature and precipitation using symbol size and orientation to represent data values on the two variables.

How well can you see temperature or precipitation? Is there a correlation between the two?

Shape and Size

FIGURE 3.40. The bivariate temperature-precipitation map of Figure 3.36, this time using point symbols that vary in shape and size to represent the two quantities.

Easier to see one shape across multiple sizes than one size of across multiple shapes?

Summary of Integral-Separable

[Figure 5.25, Color Plate 10, Ware 00]

