Perception

Maneesh Agrawala

CS 448B: Visualization Fall 2018

Lessons

Exploratory Process

- 1 Construct graphics to address questions
- 2 Inspect "answer" and assess new questions
- 3 Repeat!

Transform the data appropriately (e.g., invert, log) "Show data variation, not design variation"

-Tufte

Formulating a Hypothesis

Null Hypothesis (H ₀): (population)	$\mu_m = \mu_f$				
Alternate Hypothesis (H _a): (population)	μ _m ≠ μ _f				
A statistical hypothesis test assesses the likelihood of the null hypothesis.					
What is the probability of sampling the observed data assuming population means are equal?					
This is called the <i>p</i> value					

Polaris/Tableau Approach

Insight: simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa

Use smart defaults for visual encodings

Recently: automate visualization design (ShowMe – Like APT)

Specifying Table Configurations

Operands are names of database fields Each operand interpreted as a set {...} Data is either Ordinal or Quantitative

Three operators:

concatenation (+) cross product (x) nest (/)

Cr	Cross (x) Operator								
Cro	Cross-product of set interpretations								
Quarter x Product Type = {(Qtr1,Coffee), (Qtr1, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea)}									
	Qtr1		Qtr2		Qtr3		Qtr4		
	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	
	131	19	160	20	178	12	134	33	
Proc	Product Type x Profit =								
i —	Conee								
		0 100	200	300 400		0 100	200	300 400	
	Profit				Profit				

Nest (/) Operator

Cross-product filtered by existing records

Quarter x Month

creates twelve entries for each quarter. i.e., (Qtr1, December)

Quarter / Month

creates three entries per quarter based on tuples in database (not semantics)

Polaris/Tableau Table Algebra

The operators (+, x, /) and operands (O, Q) provide an *algebra* for tabular visualization.

- Algebraic statements are then mapped to: Queries - selection, projection, group-by aggregation Visualizations - trellis plot partitions, visual encodings
- In Tableau, users make statements via drag-and-drop Note that this specifies operands NOT operators! Operators are inferred by data type (O, Q)

Ordinal - Ordinal							
2	Product Type		_]			
State	Coffee	Espresso H	lerbal Tea	Tea			
Colorado	•	•	•	•			
Connecticut	•	•	•	•			
Florida	•	•	•	•			
Illinois	•		•	•			
Iowa	•	•					
Louisiana	•	•	•				
Massachusetts	•	•	•	•			
Missouri	•	•	•	•			
Nevada	•	•	•				
New Hampshire	•	•	•	•			
New Mexico	•	•	•				
New York	•	•	•	•			
Ohio	•	•		•			
Oklahoma	•	•	•				
Oregon	•	•	•	•			
Texas	•	•	•				
Utah	•	•	•	•			
Washington	•	•	•	•			
Wisconsin	•	•	•	•			

Summary

Exploratory analysis may combine graphical methods, and statistics

Use questions to uncover more questions

Formal methods may be used to confirm

Interaction is essential for exploring large multidimensional datasets

Announcements

Due before class on Oct 15, 2018

Mackinlay's ranking of encodings

QUANTITATIVE

ORDINAL

NOMINAL

Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape

Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

Topics

Signal Detection Magnitude Estimation Pre-Attentive Visual Processing Using Multiple Visual Encodings Gestalt Grouping Change Blindness

Just noticeable difference

Exponents of power law

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) - 0.6 (Heptane)
Taste	0.6 (Saccharine) -1.3 (Salt)
Temperature	1.0 (Cold) – 1.6 (Warm)
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

[Psychophysics of Sensory Function, Stevens 61]

Mackinlay's ranking of encodings

QUANTITATIVE

Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape

Position Density (V

ORDINAL

Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape NOMINAL Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

How many 3's

 $\begin{array}{l} 1281768756138976546984506985604982826762\\ 9809858458224509856458945098450980943585\\ 9091030209905959595772564675050678904567\\ 8845789809821677654876364908560912949686\end{array}$

[based on slide from Stasko]

How many 3's

3330209905959595772564675050678904567 **3**

[based on slide from Stasko]

More preattentive features

Line (blob) orientation	Julesz & Bergen [1983]; Wolfe et al. [1992]
Length	Triesman & Gormican [1988]
Width	Julesz [1985]
Size	Triesman & Gelade [1980]
Curvature	Triesman & Gormican [1988]
Number	Julesz [1985]; Trick & Pylyshyn [1994]
Terminators	Julesz & Bergen [1983]
Intersection	Julesz & Bergen [1983]
Closure	Enns [1986]; Triesman & Souther [1985]
Colour (hue)	Nagy & Sanchez [1990, 1992];
	D'Zmura [1991]; Kawai et al. [1995];
	Bauer et al. [1996]
Intensity	Beck et al. [1983];
-	Triesman & Gormican [1988]
Flicker	Julesz [1971]
Direction of motion	Nakayama & Silverman [1986];
	Driver & McLeod [1992]
Binocular lustre	Wolfe & Franzel [1988]
Stereoscopic depth	Nakayama & Silverman [1986]
3-D depth cues	Enns [1990]
Lighting direction	Enns [1990]

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Speeded classification

Redundancy gain

Facilitation in reading one dimension when the other provides redundant information

Filtering interference

Difficulty in ignoring one dimension while attending to the other

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa Stroop effect – Color naming influenced by word identity, but word naming not influenced by color

